

SunMed's VentFLO[™] ETCO₂/O₂ sampling cannulas deliver oxygen while capturing an end tidal gas sample, even with simultaneous insufflation of oxygen. These ETCO₂/O₂ cannulas also feature a bright orange reflective style connector, compatible with Microstream[™], Capnostream[™] and Oridion[™] capnography monitors.

CAT#	DESCRIPTION	LENGTH	PK
5107F-SE	Adult ETCO ₂ /O ₂ Nasal Cannula	7′	25
5110F-SE	Adult ETCO ₂ /O ₂ Nasal Cannula	10′	25
5114F-SE	Adult ETCO ₂ /O ₂ Nasal Cannula	14′	25
5207F-SE	Pediatric ETCO ₂ /O ₂ Nasal Cannula	7′	25
5210F-SE	Pediatric ETCO ₂ /O ₂ Nasal Cannula	10′	25
5214F-SE	Pediatric ETCO ₂ /O ₂ Nasal Cannula	14′	25
5707F-SE	Adult ETCO ₂ /O ₂ Oral/Nasal Cannula	7′	25
5710F-SE	Adult ETCO ₂ /O ₂ Oral/Nasal Cannula	10′	25
5714F-SE	Adult ETCO ₂ /O ₂ Oral/Nasal Cannula	14′	25

SunMed

- Hydroscopic filter inside reflective connector to help minimize moisture
- Simultaneously delivers oxygen while obtaining CO₂ sampling during spontaneous breathing
- Compatible with Microstream[™], Capnostream[™] and Oridion[™] capnography monitors
- Soft-Ears[™] material helps ensure superior patient comfort
- Designed to prevent mixing of fresh oxygen with CO₂
- 3-Channel tubing prevents kinking
- Available in three tubing lengths, each with Fits-All O₂ connector

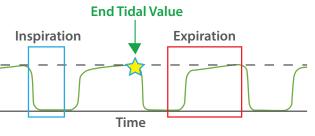
Microstream, Capnostream, and Oridion are trademarks of Oridion Medical 1987, Ltd. related to products marketed by Medtronic.

What makes VentFLO[™] ETCO₂/O₂ sampling cannulas the right choice in capnography sampling?

Sidestream capnography sampling with a modified nasal cannula that can simultaneously deliver O₂ and sample CO₂ can be susceptible to blockage from water vapor or secretions—but risk can be reduced when a filter is introduced.

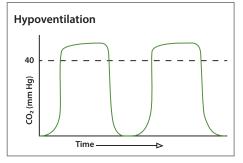
SunMed's VentFLOTM ETCO₂/O₂ cannulas feature a **hydroscopic filter** inside the reflective connector. The use of this filter helps minimize the potential that water vapor or secretions can have on the capnography waveform output. The result is a waveform that is as close to textbook standard as possible.

The importance of the waveform in capnography.


End-tidal carbon dioxide (ETCO₂) monitoring provides valuable information about CO₂ production and ventilation. Also called capnography, this monitoring provides a breath-by-breath analysis and continuous reading of ventilatory status including early signs of respiratory compromise, cardiac perfusion changes, proper placement of endotracheal tube, and ventilator circuit integrity. Each of these is translated by the capnography waveform.

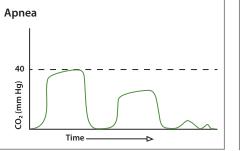
The shape of the waveform should normally be a rectangle with rounded corners. different waveform shapes can indicate different conditions. When a patient is breathing out CO₂, the graph inclines. When a patient breathes in, the graph declines. The waveform should return to the baseline, and frequency should match the patient's respiratory rate. The height of the waveform should be between 35 mmHg and 45 mmHg, which is a normal ETCO₂ reading.

Hydroscopic filter helps minimize moisture from being pulled into the monitor at the sampling port

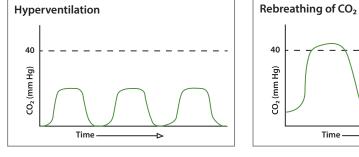

Normal and Abnormal ETCO₂ Waveform Patterns

NORMAL

A capnography waveform depicts the concentration of CO₂ in the breath, and has a mostly uniform square shape with rounded corners and a consistent pattern. The frequency of the waveform is calculated to determine respiratory rate. The breathing rate of healthy adults occurs approximately every 3-5 seconds, which equates to a 12-20 breath per minute respiratory rate. The baseline of the waveform is normally at zero because it contains less than 0.5% CO₂.


At the completion of a normal breath intake, the baseline will fall to the baseline; and at the end of the breath expiration, a normal waveform should be between 35-45 mmHg at the peak. The very peak of the waveform is the ETCO₂ reading.

ABNORMAL


Hypoventilation

The trademark sign for hypoventilation is an elevated CO₂ level above 45 mmHg in the presence of normal circulation and metabolism.

Apnea Waveform quickly falls to baseline. No breath for 10 seconds or longer.

McARTHUR MEDICAL SALES INC.

Normal Capnogram

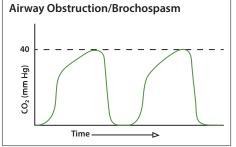
Time -

40

Ha)

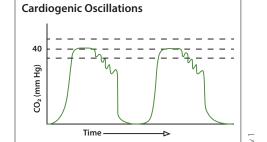
ó

Inspired


CO₂

40

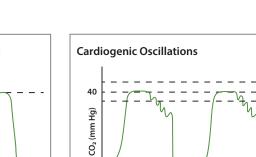
CO₂ (mm Hg)


Hyperventilation The primary indicator of hyperventilation is a decreased CO₂ level below 35 mmHg in the presence of normal circulation and

metabolism.

Airway Obstruction A common sign of airway obstruction is indicated by a shark fin shaped waveform while occurring normally once every three seconds or less.

1846 5th Concession W., P.O. Box 7, Rockton, Ontario LOR 1X0 Tel.: (519) 622-4030 • Toll Free: 1-800-996-6674 • Fax: (519) 622 - 1142 Email: mmsi@mcarthurmedical.com • Web: mcarthurmedical.com



Cardiogenic Oscillations Downslope of waveform creates a ripple effect during low frequency ventilation.

VentFLO's reflective connector houses a hydroscopic filter - unique to any other ETCO₂/O₂ cannula available - that helps minimize moisture from being pulled into the sampling port.

Time

Rebreathing of CO₂

gradual rise in the baseline.

The pattern for rebreathing CO₂ is a

ETCO₂/O₂ NASAL SAMPLING CANNULA

ETCO₂/O₂ ORAL/NASAL SAMPLING CANNULA

